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A method is presented for the calculation of a MHD equilibrium for an axisymmetric 
compact torus. The plasma pressure is assumed to be a scalar quantity. The plasma and 
magnetic fields are determined by given adiabatic quantities, entropy, poloidal and toroidal 
magnetic flux. The equilibrium calculation proceeds by alternating between the solution of the 
2-D Grad-Shafranov equation and a 1-D flux surface average of this equation. The 2-D 
calculation utilizes flux surface coordinates and finite elements. The poloidal flux function w is 
computed on an approximate flux surface coordinate system (x, ,I). The points describing the x 
surface are moved to coincide with the surface of constant w. The 1-D step computes the 
volume enclosed by each surface. The calculation is necessary due to the equilibrium being 
specified by adiabatic quantities. Three examples of equilibria computed by this method are 
represented, two spheromaks and one field reversed configuration (FRC). 

I. I~TR00ucT10N 

A compact torus is a configuration where the plasma region extends to the axis of 
rotational symmetry. The magnetic field structure forms two regions divided by a 
separatrix, see Fig. 1. Inside the separatrix the magnetic field lines form closed nested 
toroidal surfaces, flux surfaces. Outside the separatrix the field lines are open. The 
presence of the separatrix in the region of interest is one of the features of a compact 
torus. A magnetic field vortex point, or o-point, is enclosed by the separatrix, see 
Fig. 1. The procedure given here also could be used to determine equilibrium for 
other axisymmetric configurations, such as, tokamaks and field reversed pinches. 
These equilibria calculation would be simpler since there is no separatrix in these 
configuration. 

Numerically determined equilibria are used in conjunction with transport, 
compression and stability calculations. The transport calculations referred to here 
compute the evolution of the plasma and magnetic field by alternating between the 
solution of a 2-D equilibrium and a 1-D transport calculation [l]. This type of 
transport code is generally referred to as a l;D transport code [2]. Codes of this type 
have been used to simulate tokamak experiments [3-51. 
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o-point 

FIG. 1. x, 1 grid. Dark lines are surfaces of constant x. Dashed lines are surfaces of constant A. 
Dotted lines denote boundary of finite elements. 

Other possible uses of the code described here are adiabatic compression studies 
and initialization of MHD stability calculations. Since adiabatic quantities are used 
to specify the equilibrium, compression studies can be made by computing a series of 
equilibria with different boundary conditions. Compression of compact toroids can be 
done by flux compression or wall compression (61. Numerical equilibria are useful in 
MHD stability calculations as initial conditions for fast time scale evolution codes. 
Also, some stability critera [4] involve integrals over equilibrium flux surfaces. 

The equilibrium code described in this paper was developed as a replacement for 
the equilibrium calculation used in the transport code described in [I]. The 
equilibrium calculation described there uses an r, z grid. The use of this grid makes 
the evaluation of flux surface integrals difficult since 2-D interpolation must be used 
to follow the magnetic flux surface on the r, z grid. The equilibrium calculation 
described in this paper uses flux surface coordinates, which makes the evaluation of 
surface integrals faster and more accurate. Also the use of this coordinate system 
does not require as many grid points in the 2-D grid, thus reducing the computational 
time. This is due, in part, to the ability to concentrate the points in the region where 
the flux surface curvature is high. Also the surface integrals which are required 
during the equilibrium calculation can be computed with more uniform accuracy, 
since there are the same number of points on each surface. Other methods which use 
an r, z grid have problems computing flux surface integrals near the o-point 
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since the flux surfaces are small and may encompass only a few grid points. 
Equilibria have been computed for tokamaks using flux surface coordinates [7]. Also 
tokamak transport codes have used flux surface coordinates in the equilibrium 
calculations [3]. 

In the calculation described in this paper the equilibrium is specified by adabatic 
quantities. The main reason for using this method is that they are used in the 
transport code described in [ 11. The basic method for computing an axisymmetric 
equilibrium when adiabatic quantities are used has been given by Grad [2]. In an 
axisymmetric plasma with scalar pressure it can be shown that the plasma pressure P 
is a function of v/, the poloidal magnetic flux function [S]. Also the toroidal magnetic 
flux function f defined by 

is a function of I,U only [B], r is the distance from the axis of rotational symmetry. 
The magnetic field is given by 

B=vWxve+pe, (2) 

where 6’ is the toroidal angle. The v function is described by the Grad-Shafranov 
equation, 

(3) 

There are basically two methods to specify a solution to Eq. (3). One is to specify the 
functions on the right-hand side, that is, P(y) and S(w). An alternate method, which 
is used in the calculations presented here, is to specify some adiabatic quantities. A 
set of adiabatic quantities which is used in this calculation consist of specifying two 
adiabatic functions, QP and Q,, and the range of the y/ function. The range of the v 
function is determined by giving the o-point value v/o and the value at the outer 
boundary vW. The separatrix is defined as the t,u = 0 surface. One of the adiabatic 
functions which is used here is proportional to the entropy enclosed by adjacent flux 
surfaces. 

Qp = PS;/‘. 

This will be called the entropy function. The function S, is given by 

(4) 

(5) 

where V is the volume enclosed by a flux surface labeled by p. The volume integral is 
over the volume enclosed by the flux surface. And the surface integral is over the flux 
surface, where p is a dimensionless independent variable 

p= v/o-- 
-E-’ (6) 
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Given Q,@) and S,@) the pressure P@) can be obtained from Eq. (4). The other 
adiabatic function which determines the toroidal magnetic flux is given by 

Qf= j-S, = --v/,4n2q, (7) 

where q is the magnetic stability safety factor, and S, is given by 

This integral has a singularity at p = 1, because the separatrix goes to r = 0. This 
integral is evaluated by summing the volumes enclosed by the grid cells between two 
adjacent surfaces using the average of r for the cell to evaluate the l/r’. This approx- 
imation to l/r2 is inaccurate near r = 0, however, everywhere l/r2 appears in this 
calculation it is multiplied by f which must be proportional to r2 near r = 0. Thus the 
combination f/r2 will not have a singularity. 

To complete the specification of the equilibrium some type of boundary condition 
in the r, z plane must be specified. In this code this is done by assuming that the 
outer flux surface is lixed. Two types of boundary conditions can be used on the part 
of the boundary which is intersected by open lield lines. The first is to assume that 
the ends of the flux surfaces are fixed. This is the appropriate boundary condition if 
the open field lines pass into a conductor. The other type of boundary condition 
which can be used here is to assume that the field lines become parallel to the z axis, 
ayl/az = 0, at this boundary. 

The equilibrium calculation consists of two parts, a 2-D solution of the Grad- 
Shafranov equation using finite elements in the flux surface coordinate system, 
described in Section II. The other part of the calculation is the solution of the 1-D 
flux surface averaged Grad-Shafranov equation which is described in Section III. 
Section IV describes the coupling of the two parts of the calculation. In Section V 
three examples of equilibria calculated by this method are presented. 

II. SOLUTION OF THE GRAD-SHAFRANOV EQUATION ON THE x,,4 GRID 

This section will describe the 2-D aspects of the equilibrium calculation. The 2-D 
calculation alternates with the 1-D calculation which will be described in the next 
section. The 1-D calculation provides the information needed on the right-hand side 
of Eq. (3), that is, P@) and f@). 

To start the calculation an initial x, 1 grid must be set up, that is, the arrays 
r(Xi, A,) and z(xi, A,) must be initialized. This is done by guessing at the positions of 
the flux surface or inputting a grid from a previous calculation. The x, A coordinate 
system used here is not orthogonal. The distribution of the A, points on each xi 
surface is somewhat arbitrary, however a smooth distribution of points produces 
better results. The procedure used here starts by positioning the points on the 
separatrix and the outer flux surface, fixed conductor. The A, points on the remaining 
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xi surfaces are positioned so that the 1, points form a straight line. An example of a 
grid generated in this manner is shown in Fig. 1. The xj need not be evenly spaced. 
Better results are obtained if the xi are adjusted so that there are more xj surfaces 
near the o-point and separatrix. In this calculation the plasma and magnetic fields are 
assumed to be symmetric about z = 0. Thus the grid is only set up in half of the r, z 
space. 

A finite element method is used to compute w on the x, 1 grid. Each quadrilateral 
of the grid is divided into two triangles. There are two possible ways of dividing each 
quadrilateral into triangular finite elements. The computer code determines which 
opposite corners of the quadrilateral are closest and connects these corners from the 
two triangles. This procedure produces two triangles with the least amount of 
elongation. This procedure is done each time the grid points are repositioned. Thus 
each grid point can be connected to as many as eight neighboring points and as few 
as four. The w function in each element is described by a simple three parameter 
linear function of r and z. 

If Nj, is the shape function for the xj, AI point, then the w function is approximated 
bv 

(9) 

Each Nj, has four to eight parts which are each linear function of r and z; Nj, has the 
value 1 at kj, A,) and zero at all other grid points. 

A Galerkin [9] method is used to obtain a matrix equation for the unknown vi,. 
The Grad-Shafranov equation (3) is multiplied by each of the Nj, and integrated over 
the region of nonzero Nj,. As usual the left-hand side of this equation is integrated by 
parts to remove the second derivatives and replace them with products of two first 
derivatives. The resulting set of equations have the following matrix form 

Aty=B. (10) 

The vector w contains the unknowns vi,. Since each surface has the same number of 
points and each point (j, I) is only connected to the I - 1, 1, and I+ 1 points on the 
j - 1, j, and j + 1 surface, the matrix A has nine bands. The grid was set up in this 
way to make use of fast matrix inverters which exist for a nine banded matrix. The 
elements of the bands are, 

a I,k = - 
I 

$VNj/*VNj-~,,-,. 

a 2,k = - 
.i 

$ VNj/ . VNj-I,/, 

a 3,k = - 
I 

d”TVNjl. VNj-1,)+1, 
r2 

a 4,k = - $ VNj/ . VNj,/ - 13 
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a 5,k = - fi VNj, ’ VNj,, 
Y2 

a 6,k = - 
I 

fi VNj, . VNj,+ , , 
r2 

a 7,k = - 
1 

~VNj,. VNi+t,,~l, 
r2 

a ?.,k = - 
I 

fi VNj, . VNj+ ,,,, 
r2 

a 9.k = - 
c 

$VNj,. VNj+,,,+,, 
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where k = (j - 1)L + 1, and L is the number of points on each x surface. The 
elements of the B vector are, 

b,=-4n [d3rNj,f-+j$Nj,f. (12) 

An incomplete Cholesky conjugate gradient (ICCG) method [lo] is used to solved 
the matrix equation (10). An iterative method is more compatible with this problem 
since the solution of the linear matrix equation (10) is only one step in the overall 
iteration (between I-D and 2-D equation). It is time consuming and unnecessary to 
have a very accurate solution to Eq. (10) at every iteration. Error parameters and 
iteration limits which are input parameters for the ICCG subroutines are used to 
control the number of iterations in the solution of Eq. (10). As the overall iterations 
converge the number of iterations in the ICCG part will become smaller. This is due 
to the fact that the initial guess at w used by the ICCG method is closer to the 
answer. 

In some equilibrium calculations it becomes difficult to solve Eq. (10). This is 
particularly true of the highly elongated FRC equilibrium. In order to accelerate the 
convergence of the ICCG method some damping is introduced into Eq. (10). This is 
done by adding an identity matrix times a small quantity to the left-hand side and an 
identity matrix times a small quantity and I# to the right-hand side, where I$” is 
the vj, obtained at the last 2-D solution. This procedure is equivalent to introducing 
an artificial time dependence in Eq. (10). 

In order to preserve the nine banded structure of the matrix A at the o-point, the 
o-point is represented by L points as the other surfaces. Based on the observation that 
as one approaches the o-point the coupling of the point in the J. direction becomes 
large due to the close spacing, a strong artificial second derivative in the A direction 
is added to the problem at the o-point only. This method can be checked by noting if 
the values of vi,/ are approximately the same. 

The region of the calculation in the x, 1 space is shown in Fig. 2. x ranges from x,, 
the o-point, to x,,,, the outer flux surface. The separatrix is x equal to zero. The J 
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FIG. 2. Boundary condition used on x, grid for 2 - D calculation 

variable ranges from zero to z The o-point corresponds to the lower boundary in this 
figure which is at x0. The I,U function will be approximately a constant along this 
boundary as described earlier. The left-hand boundary of Fig. 2 below x = 0 
corresponds to the line from the o-point inward to r = 0 at z = 0. The boundary 
condition which is applied here is that dty/dz = 0. The left-hand boundary of Fig. 2 
above x = 0 corresponds to the top boundary of the r, z grid, Fig. 1. There are two 
types of boundary conditions which can be applied here. One is L$/laz = 0. The other 
type is to fix w along this boundary. This corresponds to the problem where the 
magnetic field lines pass into a rigid conductor. The top boundary of Fig. 2 
corresponds to the outer flux surface in the problem, it is assumed to be fixed and 
have a constant value of w,. The right-hand side of Fig. 2 corresponds to the line 
form the o-point to the outer flux surface along z = 0. The boundary condition which 
is applied here is the symmetry condition @/az = 0. 

The separatrix, x = 0 can be divided into two lines in the r, z space, the outer 
curved line which end at r = 0, and the line r = 0. The boundary condition v = 0 is 
applied on the r = 0 line. In the x, A space this boundary condition is applied by 
setting v = 0 on the line from 0 to A, at x = 0. There are no boundary conditions 
applied to the curved part of the separatrix. Its v value will become zero as the 
computation converges. 

The next step after the I,u’s have been computed on the x, A grid is the repositioning 
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of the grid points in r, z. The new minimum value of v, o-point, is now determined. 
This minimum will be at z = 0. The minimum w and its r position are determined by 
quadratic interpolation. The new w, will not be exactly the specified value x0. The 
difference between these two quantities can be used as a measure of convergence or a 
check of the accuracy of the equilibrium. The ly values inside the separatrix are 
scaled so that the new v at the o-point has the desired value. 

Two different procedures are used to reposition the grid points. If the new o-point 
is too far from its previous position, an attempt to move the points along the A lines 
will scramble the points near the o-point. The procedure which is used in this case is 
to move all the points in the Y direction in order to place the o-point at the inter- 
polated I+U minimum. If the o-point position is near the old position then the following 
procedure is used to reposition the points. The points are moved along a line of 
constant A to form a more accurate w surface. From a line of given /1, the r positions 
form a function r(vjr), and the z positions form z(vil). The new values of r and z of a 
grid point are found by linear interpolation. This is done on each A, line and for each 
point, also the new o-point position is placed at the interpolated I+V minimum. 

In order to damp oscillations which occur in some calculations during the 1-D 2-D 
iterations and ensure convergence, it was found that the w value used to determine the 
new position of a grid point vj”; should be obtained by mixing I,Y~, and xj, 

V$ = aVj/ + (a - l>X.j* ('3) 

For the FRC equilibria a must be about 0.3. 
Once the points have been repositioned along the A lines to form new flux surfaces 

some steps must be taken to ensure a smooth distribution of points on each x surface. 
This procedure consists of moving the points along the separatrix so that the points 
have a smooth distribution. Then the points on the other surfaces are moved parallel 
on the flux surface so that the lines of constant 1 are straight. Thus the lines of 
constant 1 inside the separatrix will form straight lines from the separatrix to the 
o-point, and outside the separatrix from the separatrix to the outer surface. Thus a 
new 2-D x, A grid has been produced in which the x surfaces are closer to being 
surfaces of constant v/. 

III. SOLUTION OF THE SURFACE AVERAGED GRAD-SHAFRANOV EQUATION 

The 1-D flux surface-averaged Grad-Shafranov equation is need to compute S, 
which is needed to compute the new values of P from Q,, and f from Qf. The 1-D 
equation is a second order ODE for V the volume as a function of p. Its derivation 
and solution will be described in this section. 

To perform the surface averaging of the Grad-Shafranov equation the same shape 
functions are used as was used in the 2-D problem. The Grad-Shafranov equation is 
multiplied by the sum of all the shape functions Nj, with the same j, and integrated 
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over the volume. This procedure of deriving the 1-D equation ensures consistency 
between the 1-D and 2-D equations. The resulting equation is, 

Putting in P and f in terms of Qp and Qf yields the tridiagonal equation for Vj, 

ajvj-*+bjVj$cjVj+,=O, (15) 

where 

w: Kj- 112 + S6.j Qp,j- 112 S,,jQ;,j- 1/2E;- 112 

ai = APj- 1/2S:,j- l/2 APj-,/2Si!j- l/2 ’ APj-,/zS?.j-1/2 ’ 
(164 

w: 

'j = APj+ 1/2Si,j+ 112 
Kj+ l/2 + ss,jQp,j+ 112 

APj+ 1/2Sf!.f+ 112 

f ST,jQT,j+ l/2$+ I/2 

APj+ liZS:.jf l/2 ’ 
(16b) 

b,=-aj-cj, (16~) 

where 

Se,j=$~d3r~Nj,, 
J I 

1 
S,,j=- 

2Apj i 

(18) 

(19) 

where 

APj=Pj+,/2-Pj-1/2* (20) 

The above integrals are over the region of nonzero Nj,. The four quantities, Kj+ ,,2, 

Ej+ l/2’ S,,j, and S,,j are assumed to be a constant during the calculation of V, they 
are obtained from the 2-D grid. The other function in Eq. (16) is 

Kj, Ii2 = 
sl,j+ 112 . djr IW’ 

I 
APj+ L/2 . 

yz’ (21) 

The integral in (21) is Grad’s inductance, it is over the volume between surfaces pj+, 
and pj. S,,j+,,2 is given by 

sl,j+ 112 = 
vj+l - vj 

A 2 
Pj+ l/2 

(22) 
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APj+ 112 = Pjt I- Pj (23) 

and Vj is the volume enclosed by the pj surface. Equation (15) is the form used in the 
case when the @I/C% = 0 boundary condition is used on the top boundary in the r, z 
space. If the rigid conductor boundary condition is used, then there will be an 
additional term in Eq. (15) due to a surface integral over the top boundary. 

Equation (15) is soved in two separate regions. In this calculation there can be 
plasma in both regions, inside the separatrix and between the separatrix and outer 
wall. The first region is for 0 < p < 1 (region enclosed by separatrix). The boundary 
conditions for this region is that V(0) = 0 and I’( 1) = V,, where I’, is the volume 
enclosed by the separatrix; V, is obtained form the 2-D solution. The second region 
is 1 < p < p, (region between separatrix and outer flux surface). The boundary 
conditions for this region are V( 1) = I’, and V@,) = V,., where V,. is the volume 
enclosed by the outer flux surface, which is a constant. 

Since the coefficients a,i, bj, and cj is Eq. (15) depend on Vj through S,,j+ ,,2, an 
iteration method must be used to solve this equation. The coefficients aj, bj, and cj 
are determined using the last values of S1,j+ ,,>. The equation is then solved for Vj 
which from Eq. (22) gives new values of Si,j+,,2. Now new aj, bj, and cj can be 
computed, and Eq. (15) can be solved again. During this iteration the quantities 
Kjtl/2, cyt L/2> S,,j, and S,,j are held fixed. These quantities come from the 2-D 
solution. 

With Vj determined by solving Eq. (IS), the ~?i,~+ ,,2 can be computed from 

Eq. (22); s2,j+ I/2 is obtained from Eq. (17) by assuming Ejt ,,2 does not change 
during the 1-D calculation. Thus P and f can be obtained from Eqs. (4) and (7). The 
terms on the right-hand side of the 2-D equation (3) can now be determined. 

IV. SUMMARY OF 1-D 2-D ITERATION PROCEDURE 

The calculation starts with the specification of the QP and Qr functions and the 
values of v at the o-point and the outer wall. An initial grid is generated or read in 
from a previous calculation. Next the flux surface average quantities which are need 
for the 1-D calculation are computed. These are Kj+,,2r S,,j, S,,j, and ET+,,* which 
are determined from the 2-D grid. Then Eq. (15) is solved for Vj. This calculation 
gives a better value of S,,j and S2,j which are used to compute cj and& for the right- 
hand side of the 2-D Grad-Shafranov equation, 

The 2-D equation (10) is now solved for vjl on the x, 2 grid. The points are then 
moved to a new approximate w flux surface. Then the grid points are moved parallel 
to the flux surfaces to maintain a smooth distribution of points on each flux surface. 

With a new grid set up the first iteration is completed and the surface integrals, 
Kj+ i/2, s,,, s,,j, and &f+,p, can be computed. The 1-D 2-D iteration continues 
until a convergence criterion is satisfied. When the average value of the grid point 
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displacement is less than some small quantity the equilibrium is assumed to be con- 
verged. 

The repositioning of the x-point, where the separatrix goes to r = 0, can lead to 
slow convergence in some cases, in particular, the elongated FRC. For these cases it 
was found that adding another step in this calculation can produce better 
convergence. This step consists of minimizing the total energy of the system with 
respect to a displacement in the z direction of the x-point. The displacement which 
was chosen has the form 

r 411 - WJ21 z/z, for z < z, 
6(r, z) = 

et - z> 
I- 

(24) 
ds[ 1 - w5v)21 cz, _ zs) for z > z, 

This displacement is 6, for the x-point and reduces lineary to zero at z = 0 and at the 
top, z = zt. It also reduces quadratically to zero at the wall radius rw . 

T>e energy integral which is minimized is 

W= 1 d3r ($++j > (25) 

where the integral is over the entire region of the calculation. W can be assumed to be 
of the form 

(26) 

where W, is the energy integral before this displacement, 6 = 0. The first and second 
derivatives are computed numerically by evaluating the integral (25) at 6, = +a, 0, 
and -E, where E is some small number and using finite differences to compute the 
derivatives. Taking d/de?, of Eq. (26) and setting it to zero will yield the 6, which 
minimizes the energy, this is 

dW -- 
c 1 

6, = 
dd s=o 

d2W ’ 
(27) 

i j -&F S=O 

With 6, now given, each point in the grid is now moved in the z direction by the 
amount given by Eq. (24). This procedure is only used for the more difficult FRC 
equilibrium. In these cases it is done every 1-D 2-D iteration. 

V. RESULTS 

As a check of the accuracy of this procedure a Hill vortex solution was used as a 
test case. This analytic equilibrium is given in [ 161. In this test case the separatrix is 
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assumed to be fixed, and only the equilibrium inside the separatrix is computed. For 
this equillibrium the pressure P is a linear function of w and f is assumed to be zero. 
The input for this equilibrium calculation QP must be numerically computed. The 
volumes enclosed by the analytic w function are first numerically computed, using 
enough points to ensure that the error in the volumes are much less than the expected 
error in the equilibrium calculation. With the volumes computed the S,,j+ ,,* can be 
computed and with the given analytic P function Q,,, the input for the equilibrium 
calculation, can be determined. 

After the code has computed an equilibrium the vi, can be compared to the 
analytic w at each grid point. Four cases with spherical separatrix were run with 
different grid sizes. The four cases were (J = 5, L = lo), (J = 10, L = 20), (J = 20, 
L = 40), and (J = 40, L = SO), where J is the number of flux surfaces and L is the 
number of points on each flux surface. The average errors in v/ for these cases were 
1.4%, 0.41%, 0.120/o, and 0.033%, respectively. The maximum errors in li/ for these 
cases were 4.0%, 1.08%, 0.35%, and 0.090%, respectively. The number of 1-D 2-D 
iterations for these cases were 4, 4, 7, and 17, respectively. The Cray-1 computer time 
for these cases were 0.1, 0.3, 2.0, and 35.0 set, respectively. 

Oblate and prolate Hill vortex solutions were also tested. An oblate case with 
separatrix radius at z = 0 of 50 cm and separatrix z of 10 cm at r = 0 gave accuracy 
very similar to the spherical cases. No damping was required to obtain convergence 
in the spherical or oblate cases, however, a prolate cases which was tested required 
some damping to obtain convergence. This case had a separatrix radius at z = 0 of 
10 cm and a separatrix z at z = 0 of 50 cm. The errors for the prolate cases were 
about twice that of the spherical cases. 

Three equilibrium calculations are presented in this section. These examples are of 
current experimental devices. Compact toroids can be divided into two types, 
spheromaks and field reversed configurations (FRC). Spheromaks are characterized 
by containing both poloidal and toroidal magnetic fields which are of approximately 
the same order of magnitude. FRC’s contain only poloidal fields. Two equilibrium 
calculation examples of spheromaks are presented and one of a FRC. 

Figure 3a shows the contours of constant li/ for an equilibrium similar to the one 
produced in the CTX experiment [ 1 1 ]. In this equilibrium the separatrix is assumed 
to lie on the flux conserver which is made of copper. There is no external or guide 
magnetic field in this example. This plasma is produced by a magnetized coaxial 
plasma gun [ 121. The plasma is injected into the flux conserver along the z axis 
through a hole in flux conserver (at z = 20 in Fig. 3a). This hole is not represented in 
this calculation. 

Figure 3b is a plot of the plasma pressure at z = 0, Fig. 3c is a plot of the toroidal 
current at z = 0, Fig. 3d is a plot of the poloidal magnetic field at z = 0, and Fig. 3e 
is a plot of the toroidal magnetic field at z = 0. The poloidal magnetic field at r = 0, 
z = 0 has a value of -2.2 kG. The o-point radius is at 24.0 cm, 

In this calculation there are 9 flux surfaces with 20 points on each flux surface for 
a total of 180 points in the 2-D grid. This calculation took 17 1-D 2-D iteration for a 
total of approximately 1.2 set on the Cray-I computer. 
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FIG. 3. CTX equilibrium, (a) ,y, I grid, (b) pressure vs. r ar z = 0, (c) toroidal current vs. r at z = 0. 
(d) poloidal magnetic field vs. r at z = 0, (e) toroidal magnetic field vs. r at z = 0. 

A measure of the consistency of this calculation is the error in v/,, that is, the 
difference between the value of I,U at the o-point as obtained from the last 2-D 
calculation and that specified in the statement of the problem. In this calculation 
these two numbers differ by 0.4%. More iterations will not improve this number. 

Figure 4a shows the contours of constant w for an equilibrium similar to that 
obtained in the proto S - 1C Spheromak [ 131. This field configuration, which is 
produced by induction from a flux core, [ 141 contains both poloidal and totoidal 
magnetic fields. The flux core has a major radius of 30 cm and a minor radius of 
6 cm.In the experiment the core is enclosed by a vacuum chamber. There are external 
field coils outside the chamber. The boundary conditions would be difficult to 
simulate exactly with this code. These boundary conditions are approximated in this 
calculation by a outer fixed flux surface which has the same v value as the flux core. 
The top, z = 40, is assumed to be a fixed conductor, i.e., the ends of the flux surfaces 
are fixed. The external magnetic field which is simulated here has a value of 220 G. 

Figure 4b is a plot of the pressure at z = 0, Fig. 4c is a plot of the toroidal current 
at z = 0, Fig. 4d is a plot of the poloidal magnetic field at z = 0, and Fig. 4e is a plot 
of the toroidal magnetic field at z = 0. The poloidal magnetic field at r = 0 and z = 0 
is -1.8 kG. 
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FIG. 4. Proto S ~ IC equilibrium, (a) x, A grid, (b) pressure vs. r at z = 0, (c) toroidal current vs. Y 
at L = 0. (d) poloidal magnetic field vs. r at z = 0. (e) toroidal magnetic field vs. r at z = 0. 

In this calculation there are 9 surfaces of constant li/ inside the separatrix and 4 
outside the separatrix, for a total of 14 surfaces. Each flux surface consist of 20 
points. There is a total of 280 points in the 2-D grid. This calculation took about 60 
I-D 2-D iterations for a total of 5.0 set on the Cray-1. The error in the o-point value 
of w in this calculation is 0.06%. 

The last example presented here is an example of an FRC, which has no toroidal 
magnetid field. Very elongated FRC’s are produced in the field reversed theta pinch 
experiment FRX [6]. Figure 5a are plots of the flux surfaces of an equilibrium 
similar to the one in FRX. The boundary conditions used at the top, z = 50, is 
@/az = 0. The theta pinch coil which is 100 cm long and has a 24.8 cm i.d. forms 
the outer flux surface. The passive mirror is simulated by the smaller diameter at the 
top of Fig. 5a. This equilibrium has all the plasma enclosed by the separatrix. It is 
characterized by large gradient in the pressure at the separatrix, Fig. 5c, which 
produces a sharp peak in the toroidal current density at the separatrix, Fig. 5d. The 
length of the plasma, in the z direction, is controlled by the value of Q,. Larger Q, 
pushes the separatrix to higher z. 

The positioning of the points on the separatrix is important in this calculation. 
There must be an adequate number of points in the region where the separatrix goes 
to z = 0. In this calculation instead of placing the points uniformly along the 
separatrix, they are spaced so that the distance between points is inversely propor- 
tional to the distance to the origin (r = 0, z = 0). 

There are two approximate equilibrium conditions which characterize an FRC. 
The first one of these is [6], 

rs/ro = fi, (28) 
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FIG. 5. FRC equilibrium, (a) x surfaces, (b) poloidal magnetic field vs. r at z = 0, (c) pressure vs. r 
at z = 0, (d) toroidal current vs. r at z = 0. 

where rS is the separatrix radius at z = 0 and r0 is the radius of the o-point. In this 
calculation r, is 6.990 cm and rS is 9.840. Thus the relation (28) is satisfied to about 
0.5 %. The other relation is an approximate pressure balance relation [ 15 1, 

@)-l-f(~)‘. 

w 

where 

(29) 

(30) 

where rW is the radius of the wall. The above integral is over the area encircled by Y, 
at z = 0; B, is the magnetic field outside the separatrix at z = 0. For the equilibrium 
shown in Fig. 5, @) from Eq. (29) is 0.9213 and @) from Eq. (30) is 0.9188. They 
differ by 0.2%. Another method of checking the accuracy of this equilibrium, is to 
check to see if there are jumps in the quantity, B2/87r + P, across the separatrix [ 171. 
In this calculation this jump is approximately 1.3%. 

In this calclation there are 10 flux surfaces inside the separatrix and 10 outside. 
Each surface is defined by 40 points. The 2-D grid consists of 800 points. This 
calculation took approximately 150 1-D 2-D iterations to converge for a total of 70 
set on the Cray-1. The error in the o-point is approximately 0.4%. The long thin 
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equilibriums are more difficult to produce then the ones with a more spherical 
separatrix. In this calculation the x-point is repositioned by the energy minimization 
method in each I-D 2-D iteration. 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, 
or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or simply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government thereof, and shall not be used for 
advertising or product endorsement purposes. 
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